Cross-scalar satellite phenology from ground, Landsat, and MODIS data
نویسندگان
چکیده
Phenological records constructed from global mapping satellite platforms (e.g. AVHRR and MODIS) hold the potential to be valuable tools for monitoring vegetation response to global climate change. However, most satellite phenology products are not validated, and field checking coarse scale (≥500 m) data with confidence is a difficult endeavor. In this research, we compare phenology from Landsat (field scale, 30 m) to MODIS (500 m), and compare datasets derived from each instrument. Landsat and MODIS yield similar estimates of the start of greenness (r=0.60), although we find that a high degree of spatial phenological variability within coarser-scale MODIS pixels may be the cause of the remaining uncertainty. In addition, spatial variability is smoothed in MODIS, a potential source of error when comparing in situ or climate data to satellite phenology. We show that our method for deriving phenology from satellite data generates spatially coherent interannual phenology departures in MODIS data. We test these estimates from 2000 to 2005 against long-term records from Harvard Forest (Massachusetts) and Hubbard Brook (New Hampshire) Experimental Forests.MODIS successfully predicts 86% of the variance at Harvard forest and 70% of the variance at Hubbard Brook; the more extreme topography of the later is inferred to be a significant source of error. In both analyses, the satellite estimate is significantly dampened from the ground-based observations, suggesting systematic error (slopes of 0.56 and 0.63, respectively). The satellite data effectively estimates interannual phenology at two relatively simple deciduous forest sites and is internally consistent, even with changing spatial scale. We propose that continued analyses of interannual phenology will be an effective tool for monitoring native forest responses to global-scale climate variability. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves
Green-leaf phenology describes the development of vegetation throughout a growing season and greatly affects the interaction between climate and the biosphere. Remote sensing is a valuable tool to characterize phenology over large areas but doing at fineto medium resolution (e.g., with Landsat data) is difficult because of low numbers of cloud-free images in a single year. One way to overcome d...
متن کاملPhenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery
Updated extent, area, and spatial distribution of tropical evergreen forests from inventory data provides valuable knowledge for research of the carbon cycle, biodiversity, and ecosystem services in tropical regions. However, acquiring these data in mountainous regions requires labor-intensive, often cost-prohibitive field protocols. Here, we report about validated methods to rapidly identify t...
متن کاملReconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring
With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion...
متن کاملPreparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia
Time series of images are required to extract and separate information on vegetation change due to phenological cycles, inter-annual climatic variability, and long-term trends. While images from the Landsat Thematic Mapper (TM) sensor have the spatial and spectral characteristics suited for mapping a range of vegetation structural and compositional properties, its 16-day revisit period combined...
متن کاملMaintenance of ecosystem nitrogen limitation by ephemeral forest disturbance: An assessment using MODIS, Hyperion, and Landsat ETM+
[1] Ephemeral disturbances, such as non-lethal insect defoliations and crown damage from meteorological events, can significantly affect the delivery of ecosystem services by helping maintain nitrogen (N) limitation in temperate forest ecosystems. However, the impacts of these disturbances are difficult to observe across the broad-scales at which they affect ecosystem function. Using remotely s...
متن کامل